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Abstract—Multiple object tracking (MOT) is an important yet
challenging task in video understanding and analysis. Basically,
MOT aims to associate detected objects into trajectories based
on their temporal relationships. The occlusion among moving
objects poses a major challenge towards robust modeling of
these relationships. In this paper, we propose a novel Tracklet
Siamese Network (TSN) for learning similarities between track-
lets characterized by appearance information, achieving superior
performance on two MOTChallenge benchmark datasets. Our
framework constructs short tracklets from highly-related object
detections by excluding inaccurate object detections. We also
adopt a constrained clustering technique to piece tracklets
together into long trajectories, thus recovering many missing
detections caused by original detector or the detection removing
in the previous step. Comparisons against state-of-the-art meth-
ods were reported while ablation studies further substantiate the
viability of components in our approach.

Index Terms—Multiple object tracking, tracklet, tracklet
siamese network, local temporal pooling, constrained clustering

I. INTRODUCTION

Multiple object tracking (MOT) is an important field in
computer vision, which is useful for applications such as
behavior analysis, traffic security and robotics [1], [2]. The
purpose of MOT is to associate detected objects from different
frames to generate complete object trajectories [3], [4]. In
many high-density scenes, object occlusion is a major problem
as shown in Fig. 1. As such, misdetections or tracking drift
often occur, resulting in a deterioration in performance.

Since the key task in MOT involves associating or linking
detected objects, most research works focus on developing
effective object association strategies [5], [6], [7]. For example,
Tang et al. [5] modeled their technique as a Minimum Cost
Subgraph Multicut Problem, which clusters targets jointly
across space and time. Yang et al. [6] proposed a min-cost
multi-commodity network flow within a hybrid framework
to fuse global optimization and local optimization in data
association. Gao et al. [7] designed a social-topology model
which combines intra- and inter-group structures and learns
typical topology patterns to improve the accuracy of target
association. Since these methods are inattentive towards the
quality of detection during association, their results are often
riddled by noisy detections caused by object occlusions.

Moreover, some recent research used deep learning methods

Fig. 1. An example of occlusion during tracking. Different colors denote
different tracklets. The dashed boxes indicate noisy detections that could lead
to inaccurate trajectories.

to develop robust object-wise similarity measures for better
detection association [8], [9], [10], [11]. Schulter et al. [8]
proposed a deep network flow method while Tang et al. [9]
advocated a DeepMatching algorithm; both of which were
introduced to learn features for object similarity by minimizing
pairwise association costs. In addition, Son et al. [10] designed
a Quadruplet Convolutional Neural Networks to achieve end-
to-end tracking. Wang et al. [11] proposed a Siamese Network
with a metric learning based loss function that learns directly
from pairs of warped target images. Although these methods
show improvements over their predecessors, they do not make
full use of the appearance information of the tracklets, or
object track fragments, which may provide less noisy input
and better representation than images.

To address these problems, we propose a novel approach
to MOT based on high-confidence tracklet generation and
constrained clustering. We first construct short tracklets from
temporally highly-related object detections, which can ex-
clude most imprecise detections. Then, we propose a tracklet
siamese network (TSN) to learn the similarity between track-
lets by fully utilizing the appearance information of tracklets.
To associate tracklets that are similar, the short tracklets are
clustered to generate the long trajectories, with constraints in
place to handle temporal overlaps. This process ensures that
missing detections are complemented by the interpolation be-
tween two neighboring tracklets representing the same object.

In summary, the main contributions of our approach are two-
fold: (1) We design a new tracklet siamese network to improve
the accuracy and robustness of learning tracklet similarities;
(2) We extend a constrained clustering method to associate
short tracklets into long trajectories.

The rest of the paper is organized as follows. The details of
our proposed method are introduced in Sec. II. Sec. III shows
the experimental results, with ablation studies and comparisons
against other methods. Finally, Sec. IV concludes the paper.



Fig. 2. Framework of the proposed approach. First, the detections (the
dots) are linked to form different tracklets (the arrows). Then, the tracklet
similarities are learned by the tracklet siamese network. Finally, the tracklets
are clustered and associated to generate complete trajectories.

II. METHOD

As shown in Fig. 2, our proposed method aims to link
detections to form high-confidence tracklets and further asso-
ciate them into long trajectories by clustering. We describe our
method in three steps: tracklet construction, tracklet similarity
calculation and constrained tracklet clustering.

A. Tracklet Construction

The tracklet construction process aims to merge highly-
related objects into high-confidence tracklets, such that they
can be used as basic units for the clustering process later.

We first apply a min-max normalization on the detection
confidence scores of each detected object, and exclude low
confidence ones. Then, the classic Kuhn-Munkres (KM) al-
gorithm is used to dynamically associate temporally related
objects into tracklets [12]. During object association, we model
the similarity between an object and a tracklet by appearance
similarity and motion similarity [12]. To ensure the reliability
of the tracklet, we enforce a strict merging bound; an object D
is allowed to join a tracklet T only when both of its appearance
and motion similarity to T is larger than 0.8.

B. Tracklet Similarity Calculation

To improve the accuracy of tracklet association, it is im-
portant to design an effective tracklet similarity calculation
method. For simplicity, some recent methods model tracklet-
wise similarity by the similarity between the features of
tracklets’ terminal objects [5], [6]. However, since the terminal
object of the tracklet is not representative of the entire tracklet,
and there is likelihood of noise in the terminal object detection
caused by occlusion, it is inaccurate to directly use features
from the terminal object alone. Therefore, we design a tracklet
siamese network (TSN) to learn tracklet similarity by using all
the appearance information of the tracklets.

Architecture. The architecture of TSN is showed in Fig. 3.
The input of the TSN is two tracklets of any length while the
output is the similarity score between the two tracklets. All
images of the input tracklets will be input to a backbone CNN
to obtain a series of feature vectors for each input tracklet. The

Fig. 3. The Tracklet Siamese Network (TSN). Its framework is displayed
on top while the details of the temporal attention network is displayed at the
bottom. The input to TSN is two tracklets and the output is a similarity score.

temporal attention network then takes these features to fuse the
appearance information of all detected objects in the tracklet.

In the temporal attention network, every feature vector is
concatenated with its neighboring 2τ vectors before feeding
it to a local temporal pooling layer, which only considers a
localized part of the tracklet information. The reason behind
this is to accommodate potential occlusions of the object,
which usually occur in a short few continuous frames. The
local temporal pooling layer is defined as:

ukt = max(vkt−τ , · · · , vkt−1, v
k
t , v

k
t+1, · · · , vkt+τ ) (1)

where vkt is the kth element of the input feature vector vt and
ut is the corresponding pooled vector of vt. The value of the
constant τ is discussed in detail in Sec. III.

Intuitively, this mechanism generates a pooled vector which
includes the local temporal information. Further to this, all
pooled vectors are input to a fully connected layer, which in
turn produces a set of weights. The final feature vector is repre-
sented by the weighted average of the input feature vectors:

a =

L∑
t=1

wtvt (2)

where a is the final tracklet feature vector. wt is the corre-
sponding weight of vt and L is the length of the input tracklet.

Learning and loss function. The TSN consists of two
parallel networks that share the same parameters, and is trained
by using the contrastive loss:

L = y||ai − aj ||22 + (1− y)max(m− ||ai − aj ||2, 0)2 (3)

where ai and aj are feature vectors of two input tracklets. The
margin m is set to 0.2, y = 1 denotes the two tracklets are of
the same objects while y = 0 denotes different objects. During
test phase, the similarity between two tracklets is calculated
by the cosine similarity between their feature vectors.

C. Constrained Tracklet Clustering

After obtaining tracklets and their respective similarities,
we need to associate them to form long trajectories. To make
full use of the global information of all tracklets, we extend
the clustering method of Rodriguez and Laio [13] to perform
the association. The basic idea of this clustering method is



that cluster centers are characterized by a higher local density
than their neighbors and by a relatively large distance from
sample points with higher local densities [13]. In our method,
tracklet is the basic clustering unit and the local density ρi of
tracklet Ti is measured by similarity (instead of distance):

ρi =
∑

j:O(Ti,Tj)=0

χ(sij − sc) (4)

where χ(x) = 1 if x > 0 and χ(x) = 0 otherwise. The simi-
larity threshold sc is set at 0.5 while O(Ti, Tj) = 0 constrains
that tracklets Ti and Tj do not overlap in the temporal domain,
which ensures that two tracklets with temporal overlapping
could not be considered as the same object.

The maximum similarity δi between tracklet Ti and any
other tracklet Tj with higher density is defined as:

δi = max
j:ρj>ρi,O(Ti,Tj)=0

(sij) (5)

In our method, we recognize tracklets that fulfill δi < sc as
cluster centers so that the similarity between any two cluster
centers is always lower than sc.

After finding the cluster centers, we can assign the remain-
ing tracklet to the same cluster as its most similar tracklet
of higher density. Note that two tracklets with temporal
overlapping may not belong to the same object. Thus, if a
new tracklet is in conflict with any tracklet in the cluster, it
should be assigned to the next most similar tracklet of higher
density; this step is repeated until the conflict is resolved. If
the tracklet is in conflict with all the clusters, it is then deleted.

When the clustering process is finished, the tracklets be-
longing to the same cluster will be sorted according to the
frame index. The neighboring tracklets in the same cluster are
then associated to generate a long trajectory while the missing
detections are added by linear interpolation.

III. EXPERIMENTS

This section reports the experiments that were conducted.
We first introduce the datasets used and experimental details.
Then, we report some ablation studies on our method and
make comparisons against recent state-of-the-art methods.

A. Datasets and Implementation Details

We perform experiments on two benchmark datasets:
MOT15 [14] and MOT16 [15]. The MOT15 dataset contains
11 training sequences and 11 test sequences. The MOT16
dataset contains 7 training sequences and 7 test sequences.
All sequences in MOT15 and MOT16 are captured by static
or moving cameras, with different scenes and resolutions.
These datasets are challenging as the sequences contain a large
amount of objects and various types of object occlusions.

We evaluate our method by the CLEAR MOT metrics
[16], including Multiple Object Tracking Accuracy (MOTA),
Multiple Object Tracking Precision (MOTP), False Negatives
(FN), False Positives (FP), Identity Switches (IDs), Mostly
Tracked Trajectories (MT) and Mostly Lost Trajectories (ML).
Specifically, MOTA is the primary evaluation metric involving
FN, FP, IDs which typically depicts the overall performance.

TABLE I
ABLATION STUDY ON MOT16 VALIDATION DATASET.

Method MOTA↑ MOTP↑ MT↑ ML↓
KM 38.1 77.2 13.7% 50.3%
Greedy+Terminal 39.2 77.3 15.2% 48.1%
Clustering+Terminal 40.6 77.3 16.4% 44.6%
Clustering+Siamese 42.4 77.5 18.2% 40.8%

Fig. 4. The tracking performance on MOT16 validation dataset for different
values of τ .

For fair comparison with other MOT methods, our experi-
ments utilize the publicly available detection results provided
by the MOT15 and MOT16 datasets [14], [15]. The tracklet
construction and constrained tracklet clustering steps do not
require any training. TSN is trained by the sequences with
ground-truth from MOT15 and MOT16 while the testing pro-
cess is performed by using all their respective test sequences.
A VGG-16 pre-trained model is adopted as the backbone of
the TSN, with τ in the temporal attention network set to 3.
In training, the batch size is set to 8 and the learning rate is
set to 0.0001 initially. We train for 96000 iterations, with the
learning rate repeatedly halved every 16000 iterations.

B. Ablation Studies

We also conduct ablation studies to demonstrate how our
approach would fare without certain essential components.
For ease, we ran these experiments using image sequences
(with publicly available detection results) from the MOT16
validation set to make comparisons:

(1) KM. Directly applying the classic Kuhn-Munkres match-
ing approach on the detected objects to generate trajectories.
This method uses less stricter merge bound of 0.5.

(2) Greedy+Terminal (G+T). Greedy algorithm is used to
associate the tracklets, which merges tracklets with the highest
similarity in turn. Similarity between tracklets is calculated by
features of the tracklets’ terminal objects.

(3) Clustering+Terminal (C+T). Our proposed constrained
clustering algorithm is used to associate tracklets. Similarity
between tracklets is calculated by terminal objects’ features.

(4) Clustering+Siamese (C+S). Our proposed constrained
clustering algorithm is used to associate tracklets. Similarity
between tracklets is calculated by using our proposed TSN.

Table I compares the tracking results on MOT16 vali-
dation dataset. We can see that G+T performs better than
KM. This indicates that using a stricter merge bound with
tracklet association process can reduce the noisy effects by
excluding some inaccurate detections. Comparing C+T with
G+T demonstrates that the constraint clustering algorithm
utilizes the global tracklet information more effectively than
the greedy algorithm, which leads to better results. Meanwhile,



TABLE II
TRACKING PERFORMANCE OF TSN VS. STATE-OF-THE-ART METHODS ON MOT15 AND MOT16 TEST DATASETS

Dataset MOT15 MOT16
Method MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓

CNNTCM [11] 29.6 71.8 11.2% 44.0% 7786 34733 712 – – – – – – –
CDA-DDAL [1] 32.8 70.7 9.7% 42.2% 4983 35690 614 43.9 74.7 10.7% 44.4% 6450 95175 676

NOMT [2] 33.7 71.9 12.2% 44.0% 7762 32547 442 46.4 76.6 18.3% 41.4% 9753 87565 359
MTEV [7] 33.8 71.1 12.1% 34.8% 9232 31743 722 – – – – – – –

Quad-CNN [10] 33.8 73.4 12.9% 36.9% 7898 32061 703 44.1 76.4 14.6% 44.9% 6388 94775 745
STAM [3] 34.3 70.5 11.4% 43.4% 5154 34848 348 46.0 74.9 14.6% 43.6% 6895 91117 473
JMC [9] – – – – – – – 46.3 75.7 15.5% 39.7% 6373 90914 657

NLLMPa [4] – – – – – – – 47.6 78.5 17.0% 40.4% 5844 89093 629
TSN 35.5 71.5 14.4% 43.6% 5682 33515 454 48.2 75.0 19.9% 38.9% 8447 85315 665

Fig. 5. Qualitative results of TSN on MOT15 and MOT16 test datasets.

C+S has obviously better performance than C+T, which shows
the strength of the proposed TSN in making full use of
the tracklets’ appearance information and further eliminating
unwanted effects caused by object occlusion.

In our proposed TSN, the parameter τ is set to 3. The track-
ing performance on MOT16 validation dataset for different
values of τ is shown in Fig. 4. We can see that the difference in
performance is not obvious if τ is around 3. The lowest MOTA
(41.8) with τ = 1 is larger than the next best performing
method in Table I, which further proves the robustness of our
method. We consider that some useful temporal information
may be lost if τ is too small while there may be redundancy
in information if τ is too large.

C. Compare with State-of-the-art Methods

Table II compares our approach against state-of-the-art
MOT methods on the test sequences of the MOT15 and
MOT16 datasets. For a fair comparison, all the methods
are evaluated based on the detection results provided by the
datasets. Examples of our tracking results are shown in Fig. 5.
From Table 2, we make the following observations:

(1) Our approach outperforms existing MOT methods in
terms of MOTA (the primary evaluation metric), which demon-
strates the effectiveness of our approach.

(2) Our approach produces the highest MT score on both
datasets and the lowest FN score on MOT16. This shows that
our approach associates the tracklets more accurately and is
able to properly cater for the missing detections.

(3) On MOT16, our approach produces the lowest ML score
among all methods. This demonstrates TSN’s advantage in
effectively handling the easily confusable objects.

IV. CONCLUSION

This paper introduces a new approach to MOT that compe-
tently addresses the object occlusion problem. Our approach

consists of two key ingredients: A tracklet siamese network
that learns the feature vectors with full appearance information
of tracklets to calculate tracklet similarity, and a constrained
clustering method that accurately associates the short tracklets
into long trajectories. Experiments on two MOT benchmark
datasets demonstrate the effectiveness of our approach, partic-
ularly in the MOTA and MT metrics.
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